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An existence and uniqueness result for the homogeneous Boltzmann hierarchy 
is proven, by exploiting the "statistical solutions" to the homogeneous 
Boltzmann equation. 
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1. I N T R O D U C T I O N  

The Bol tzmann hierarchy (BH) is a linear system of infinitely many  
coupled differential equations for the correlation functions of a rarefied gas 
of particles. It  can be derived from the B B G K Y  hierarchy for n hard 
spheres of diameter d in the B o l t z m a n n - G r a d  limit, i.e., letting n go to 
infinity and d to zero in such a way that  the factor nd z remains finite. The 
Bol tzmann equat ion (BE) is the equat ion satisfied by the one-particle 
correlat ion function, under the assumption of "propagat ion  of chaos"; if 
the initial condit ion factorizes, the same holds for its time evolution. (For  
generalities on the BE see refs. 1 and 2.) 

We are not  concerned here with the rigorous deduct ion of the BE from 
the B B G K Y  hierarchy, which is a deep and difficult problem, till now 

1 Department of Mathematics, Chalmers University of Technology and University, G6teborg, 
Sweden. 

2 Dipartimento di Matematica Pura e Applicata dell'UniversitY, di L'Aquila, Coppito, 67100 
L'Aquila, Italy, and Dipartimento di Matematica dell'Universit~t di Roma "La Sapienza," 
00185 Rome, Italy. 

3 Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate dell'UniversitY, di 
Roma "La Sapienza," 00161 Rome, Italy. 

345 

0022-4715/91/0400-0345506.50/0 �9 1991 Plenum Pubhshing Corporation 



346 Arkeryd ot  al.  

solved only in some special cases, such as in ref. 2 for short times and in 
ref. 3 for initial conditions which are small perturbations of the vacuum. A 
preliminary step to the rigorous deduction is the analysis of the limiting 
problem, that is, the BE or equivalently the BH. One would expect that 
whenever an existence and uniqueness result is proven for the BE, the same 
should hold for the BH. Indeed this has already been proven in some 
cases, (2-4) while others have not yet been studied (e.g., refs. 5 and 6). 

Our aim is to prove existence and uniqueness of a class of solutions to 
the homogeneous Boltzmann hierarchy (HBH), using the fairly complete 
theory on the homogeneous Boltzmann equation (HBE) developed in 
refs. 7 and 8. One can obviously prove the existence of factorizing solutions 
to the BH once results on existence and uniqueness for the BE are 
available. The uniqueness of this kind of solution is a more delicate point; 
are there solutions factorizing at time zero and not keeping this character 
for all later time? In the homogeneous case a negative answer may be 
given. Indeed, in this paper we prove existence and uniqueness of a class 
of solutions including the factorizing ones. 

Such a result would follow if we could iterate, over any finite time 
interval, Lanford's argument, which in the space-dependent case is valid 
only for short times. For that purpose a pr ior i  estimates are needed on the 
correlation functions in some norm of exponentially decaying functions as 
used by Lanford. Because of the complications involved in such an 
approach, we choose another strategy, exploiting an analogy pointed out 
in ref. 9 between solutions to the BH and "statistical solutions" to the BE. 
Statistical solutions of partial differential equations have been investigated 
in different contexts by various authors (see for example refs. 10 and 11 for 
the Vlasov equation, and ref. 12 for the fluid dynamics equations). 

The plan of this paper is as follows. The definition of statistical solu- 
tion to the HBE and its relation to the solutions of the HBH is given in 
Section 2, together with some useful background information. In Section 3 
we prove the main theorem of the paper and comment on the approach to 
equilibrium. Some technical lemmas are left for the final Section 4. 

2. ON THE B O L T Z M A N N  H I E R A R C H Y  A N D  STATIST ICAL 
S O L U T I O N S  TO THE B O L T Z M A N N  E Q U A T I O N  IN THE 
SPATIALLY H O M O G E N E O U S  CASE 

For any j ~  N, let V j -  (v~ ..... vj) represent a j-pie of vectors in ~3 (the 
velocities of the particles) and let f / R  3j ~ ~ be a nonnegative real function 
with the following properties: 

f j  (Vj) = f j (~Vj)  (symmetry) (2.1) 
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for all 2 ,  where ~Vj  is a permutation of the sequence (vl ..... vj), 

f f j(Vi) dVj = (normalization) 1 

and 

(2.2) 

fj(Wj)=fdVj+lfj+l(Wj§ (compatibility) (2.3) 

Consider the following infinite system of coupled linear differential 
equations for the fj: 

where 

~t f j (V) ,  t) ~- (Cj, j+ l f j+  l)(Vj,  t) 

f,(Vj, O) = ~(Vj) 
(2.4) 

J 

(Cj'j+lfj+I)(VJ' t)~-t 2 fn dndl)j+lYl'(Di-Uj+l) 
= 1  .(vt vj+l)~>0 

• {f j+l((vj+,) ; ,  t ) - L + l ( V j + l ,  t)} (2.s) 

(V j+l) ;  = (vl ..... v;,..., vj, v~+,) (2.6) 

v;=vi-n[(vi-Vj+l) .n]  
(2.7) 

v~+ ~ =vj+ l + n[ (vi-vs+ ,) 'n] 

and n is the unit vector in ~3 pointing from the ith to the ( j +  1)th particle. 
Equations (2.4) can be interpreted as describing the time evolution of 

the joint distribution densities ~ associated to a rarefied, homogeneous gas 
of hard spheres. In other words, f j(vl  ..... vj) denotes the probability density 
of finding any group of j tagged particles with velocities v~ ..... v/. In (2.7), 
v; and v~+ 1 are the outgoing velocities of two colliding particles with initial 
velocities vi and vj+ 1. 

The system of equations (2.4) is known as the homogeneous Boltzmann 
hierarchy (HBH). By (2.1) and (2.7) it is easy to verify- that the following 
quantities are invariant under the evolution (2.4); 

fvi~fj(Vj, t)dVj, ~ = 0 ,  1, 2, i=l,. . . , j  (2.8) 

Let us now introduce the homogeneous Boltzmann equation (HBE) 

3,f(v, t) = O(f,  f)(v,  t) 

f(v, O) = f(v) (2.9) 

f f(v) dr= 1 
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where f :  N3 __. N+, and 

1 f, dn dr. n. ( v -v . )  Q ( f , g ) ( v ) = ~  .(~ ~.)>o 

• {f (v , )  g(v')+f(v') g (v , ) - f (v , )  g(v)-f(v) g(v,)} (2.10) 

v' and v, having the same meaning of outgoing velocities as before. By 
(2.7) it is easy to see that the following quantities are invariant for 
Eq. (2.9): 

fv~f(v) dv, c~=0, 1,2 (2.11) 

In the case of factorizing distributions, i.e., 

J 

fj(Vj, t )=  I ]  f(vi, t) (2.I2) 
i - -1  

an easy calculation shows that Eqs. (2.4) and (2.9) are equivalent in the 
following sense: 

(a) If there exists a solution to (2.4) of the form (2.12) in [0, T], the 
f l  satisfies (2.9) in [0, T]. 

(b) If there exists a solution f(v, t) to (2.9) in [0, T], the f j  defined 
in (2.12) satisfies (2.4) as well as the properties (2.1)-(2.3) on 
that time interval. 

In the case of nonfactorizing data, that is, if correlations among 
particles are present, the study of the Boltzmann hierarchy is important in 
itself. The aim of this paper is to prove a result of existence and uniqueness 
of a class of solutions to the HBH (2.4) on R +. Since there is uniqueness, 
.it is enough to carry out the discussion below on a time interval [0, T] 
with T >  0 arbitrarily fixed. 

In the rest of this section, we introduce some notations and definitions 
and comment on various aspects of the proofs. 

Let JV be the set of probability measures on the a-algebra ~ of Borel 
sets in E 3. Introduce the a-algebra on JV" generated by the sets 

{Tz~JV't 7r(E)~<2 } for 2 real and E ~  (2.13) 

Also let JL be the set of probability measures on ~ with this o-algebra. 
Let X be the restriction of the o-algebra of (2.13) to 
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and let J/{~(Z) be the set of probability measures on X. Define 

I I f [ l~=f  (1+ Ivl2) ~/2 [f(v)l dv (2.14) 

and 

~l~(X) = {#~J/r ~) j) < C~, j =  1 , J  2,... } 

Here 

H(f) = f fln f dv 

(2.15) 

is the entropy, and C stands for a positive constant. The dependence of C 
on parameters will be indicated when it is relevant. 

Given any # ~ dgl~(X), define the family ~ = (fj)~ by 

J 

fj(V;) = f #(df) l-I f(vi) (2.16) 
1 

The f ;  satisfy properties (2.1) (2.3) together with 

~fdV;fs(Vj)lnfj(Vj)<C~, j = l ,  2 .... (2.17) 

J 

fdra~.(Vj) ~[ (l+lv,lRff/2<C~, j = l , 2  .... (2.18) 
i--1 

as follows by Fubini's theorem and Jensen's inequality applied to the 
convex function x In x. 

We are also interested in getting a one-to-one correspondence between 
a suitable set of sequences ~ =  (s and the probability measures # 
in JIIK(Z). By the Hewitt Savage theorem (13) given a family ~ = ( f s ) ~  
satisfying properties (2.1)-(2.3), then there exists a unique measure # 
belonging to ~ '  such that 

f:(V,)dV;= f #(dr) (~ dv(v~) (2.19) 
i=1 

If we make the assumption (2.17), then # is supported on absolutely 
continuous probability measures. That is so because under (2.17) 

H(#) := lim 1 f dV~fj(Vj)In fj(Vfl 
J 
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exists, and 

H(#) = f d#(f)  H( f )  <~ C~ (2.20) 

For a proof of (2.20) see ref. 15, Proposition 5 and ref. 14, Lemma 10. This 
allows us to write (2.19) in terms of densities. Furthermore, under (2.18) # 
belongs to JZl~(X), since the first condition of (2.15) holds by (2.20), while 
the second one follows from (2.18). 

Thus, any family 7 = ( ~ ) ~  satisfying (2.1)-(2.3), (2.17), and (2.18) 
can via the Hewitt Savage theorem be expressed in a unique way by (2.16) 
with a measure # belonging to jC/l(_r). 

Let us now introduce the space 

5P~= { f e  5~; H ( f ) <  o% I/fl[~ < oo} (2.21) 

The HBE (2.9) has a unique solution f with f ' ~ 5 ~  for t > 0 ,  when the 
initial value f0 is in 5~ and ~c/> 4 (see ref. 8). Moreover, using the collisional 
estimate 

]v ' l '+iv, i ' - lv lS- lv , js<<,K,( lvl  s l lv , l+ lv i  Iv,J" ' c o s 0 s i n 0  

- C,(Ivl~+lv,l ')cos2Osin20, s > 2  

from ref. 16, Theorem 2, the following bound for such solutions can be 
proved: 

[I f'l[~ ~< C(T, ~c)Ilfll; -a (2.22) 

with C(T, ~c) only depending on T and ~c. 
Let fi be a probability measure in ~I~(X) for x/> 4. Define by means 

of the Boltzmann flow ~ a corresponding time-evolved measure as follows: 

fit(A) = fl(J- ,A) (2.23) 

for t ~ [0, T], A ~ Z, and 

Y , A  = { f e  5P~ If ,  := ~-~,feA } (2.24) 

Setting 

and 

i=I 

fj(., t):= fj.,(.) 
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the fj,, satisfy the HBH (2.4). The fj.,, also enjoy the properties (2.17) and 
(2.18) over the i~aterval [0, T] since fie J/gl~(s). Indeed, 

and by (2.22) 

fl t( H ( f  ) ) = fi( H ( f  t) ) <~ fl( H ( f  ) ) < 

fl,([I f I[,~)Q = H((tl LII,~) J) ~< (C(T, ~c) C~ 1)j (2.26) 

So there exists--by a natural construction--a solution to (2.4) which 
satisfies (2.17) and (2.18). The uniqueness of that kind of solution is the 
main problem of this paper. 

As mentioned in the introduction, a direct investigation seems com- 
plicated. Instead we choose an approach using the previously introduced 
probability measures related to the solutions of (2.4). With that in mind we 
first discuss the evolution equation for fl, of (2.23) on an appropriate 
algebra of test functions. Then we show that this new evolution problem is 
closely connected to our initial HBH problem (2.4). 

In fact they are equivalent in a way that will be specified at the end 
of this section. 

The space of test functions is the following: Let Gj:VjE~3J---* 
Gj(Vj) e ~ be an ~ - func t ion .  Define the class of functions on ~ (for any 
j e N )  

F=UFj 
J ~  (2.27) 

F/= {r ~ I O( f )= f dV/Gj(Vj) ( I  f(v,)} 
i=1 

By the BE (2.9), 

dt ._-l~I1 ft(ui) = ,  z=l dl'ldvj+IFl'(1)i--VJ+l) 

x [-[ f , (Vk){ f , (v;) . f , (v;+,)-- f , (v,) . f , (v j+,)}  

This together with the change of variables 

gives that 

(/);, V j + l ) ~  (Vi, Vj+I) 

d 
M r  =/L(Cr (2.28) 

822/63/1-2-23 
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where 

flt(~) = f flt(df) ~b(f) 

j+! 
LO(f)= f dVj+ ~ GJdC+I(VI+I) U f(vg) 

(2.29) 

and 

z 2 f ..... ..... (2.30t 
/=1 

Notice that L~b e 5 ~ ~ (/~) for any # e Jg ~(_r), since Gj s 5~ ~ (R 3j, R), and 
the f ' s  are in 5P~ with ~>~4. In particular, L~be2~(/?,). Moreover, it 
follows from definition (2.29) that 

~b(fh) -- ~b(f) Lo~(f) = lim (2.31) 
h~o h 

The algebra F of test functions is large enough to determine the 
measure # in a unique way. Indeed, let Ks be the closure with respect to 
the weak topology of measures of the set o f f e  5~ with IIf 11 ~ < ~. Then Ks 
is compact. Consider the subalgebra Fs of Cg(K~, N) (the set of continuous 
functions on Ks) consisting of ~b's in Fj defined by bounded continuous 
functions Gj. The identity belongs to Fs; moreover, for any f ,  g in K~ such 
that f r  g, there is ~b ~ F s such that ~b(f)r ~b(g). Thus, by Stone's theorem, 
Fs is dense in the uniform topology of Cg(K~, N). Thus Fs uniquely deter- 
mines the measure #s, restriction of/~ to Ks. Moreover, by the condition 
#(][fl[~)< +oc it follows that for any set A c X  

#(A) = #(A c~ Ks) + kt(A\Ks) <<. #s(A ) + Co/c~ 

that is, # is known once #~ is determined. 
We are now ready to describe the evolution equation for /~t and 

related measures. Given a measure #oeJg~(-r), consider the following 
evolution problem: 

d 
~tt~t(~)=#t(L~) , O e F  

(2.32) 

/~ It=o=#o 

Any differentiable function t ~ #t from the time interval [-0, T] to ~#~(X) 
and satisfying (2.32) is called a statistical solution to the HBE (2.9). By the 
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previous discussion, fl, of (2.23) is a statistical solution with initial value 

Consider also the HBH (2.4). Multiply (2.4) by a function 
Gje 5r176176 3j, N) and integrate both sides with respect to dVj. This gives a 
weak form of the HBH, which after a change of variables can be written 
as follows: 

d 
d5 <h,t, a j )  = <f2+ l,t, G~+I ) 

(2.33) 
<f,,o, a ,> = <h,  a ,> 

Here 

<a,, hi> = f dVja(Vj) b(Vj) 

and Gj~+I is defined in (2.29). 
Using (2.19), define #o from the initial values (fzo)~ in (2.33). The 

solution fl, of (2.32) with initial value #o defines via (2.19) a solution of 
(2.33). More generally the following holds. 

Set 

~ = {(fi)i~ v ; properties (2.1)-(2.3), (2.17), and (2.18) hold} 

and choose ~c>~4. A family (fj)N: [0, T] ~ 5 ~  is a solution to (2.33) if and 
only if ~, is a solution to (2.32) belonging to JglK(%" ) over [0, r ] ,  where 

fi.t(Vj)=f #t(df) [I f(vi) (2.34) 
i=1 

3. STATEMENT AND PROOF OF THE MAIN THEOREM 

The main result of this paper is the following. 

T h e o r e m  3.1. There exists a unique solution 

R + 

to the weak homogeneous Boltzmann hierarchy (2.33) when ~c ~> 4. This is 
given by 

fz,(V,)=ffl,(df)~If(v,),  j = l , 2  .... 
i=1 

with fit defined by (2.23). 

822/63/1-2-23" 
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We already know that the family (fj)n of (2.25) defines a strong 
solution to (2.33). So, by the discussion at the end of Section 2, Theorem 3.1 
is a consequence of the following proposition. 

P r o p o s i t i o n  3.1. There exists a unique solution to the initial value 
problem (2.32) which belongs to JCtl~(X) for positive time. This solution is 
for t e n  + given by fit of (2.23). 

Thus it only remains to prove Proposition 3.1. For this we introduce 
a modified Boltzmann equation as follows. Choose an arbitrary positive T 
and divide the time interval [0, T] into N intervals of width e =  TIN 
(Ne  N). For any t E [0, T], let us consider the evolution equation: 

where 

d N D N N N 
- -  f [ , ] ) ( v )  d t f  t ( )=Q ( f  E,l, 

f ~ ( v )= f ( v ) eS~  
(3.1) 

1 
fn dn dr1 n . (v-v1)  I~N(1), 1) 1) QU(f, g)(v)= ~ .~v--v,)~0 

X {f(v]) g(v') +f(v ')  g(V'I)--f(v) g(vl)-- f(vt)  g(v)} (3.2) 

K.N([, /)1) ~__ f l  if [v-vt[<<.lnlnU (3.3) 
otherwise 

[ t]  = max {ke: ke < t} (3.4) 
k e n  

The above dynamics has been introduced for the following reason. For 
~beF set 

UU (~(f ) = (~(f N) 
(3.5) 

U,O(f) = O(f,) 

Then, while U,~b does not (in general) belong to F, uU~b does because of 
its particular dependence upon the initial data, which at any time has a 
product structure in terms of f ,  i.e., of fN at  time zero. This will be of 
central importance in the proof of Proposition 3.1. Furthermore, Eq. (3.1) 
enjoys the following properties. 

(i) It has the same invariants as Eq. (2.9). 

(ii) It follows by the definition of QN that 

IIQN(f, g)llo <~ Cln In N Ilfll0 llgll0 (3.6) 
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(iii) 

355 

As a consequence of the nonnegativity of fU 

Ilf~lro = Ilf l l0 in [0,  T]  (3.7)  

Indeed, if f~> 0, then at time t = e, 

N /3 N f~ = f +  Q ( f , f ) = f ( 1 - - e L N ( f ) ) + J N ( f , f )  

Here jN is the "gain" and fL  u the "loss" part of the collision 
operator, i.e., the first and the second couple of terms, respec- 
tively, in (3.2). By (3.6) 

f ~  ~> f(1 - eC In In N Ip f II o) >~ 0 (3.8) 

if e is sufficiently small. Since ~fdv  is an invariant for (3.1), we 
can iterate (3.8) up to time T. 

(iv) In exactly the same way as for Eq. (2.9), the bound (2.22) can 
be proven for f ~  on [0, T]. 

The proof of Proposition 3.1 depends on the following two technical 
lemmas, which will be proved in Section 4. 

k e m m a  3.1. Iff~-Y~, ~c~>4, then for t~ [0 ,  T], 

tl f T - f ,  llo ~< C exp(C 1 IIf ll3)/ln In N 

Let (fh)~ denote the solution to (3.1) with initial value fh, where fh is 
the solution to (2.9) at time h > 0  with initial value f .  Set 

( N N 
N fh), - - f s  ~q~f~. = lim (3.9) 

h ~ 0  h 

N N 

_ s+~ (3 .10)  @f~ f - f ,  
8 

We note that 20 plays the role of a derivative with respect to the initial 
conditions, while ~ is the usual discrete time derivative. 

L e m m a  3.2. I f f e ~ ,  ~c~>4, then for t~ [0, T], J)(2,~-~).f~v,?J[2~ 
exp(C Ilfrl32) (p(N)Ilfrl4, for some function q) of N (depending on T), such 
that 

lim ~0(N) = 0 
N ~ o o  

Proof of Proposition 3.1. Suppose that there is a solution p, to 
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(2.32) different from fl, as defined in (2.23) and belonging to ,#l~(Z) on 
[0, T]. Then 

(# , - f l , ) (O)=# , ( (~ ) -#o(UN~b)+#o(U~b  - U,(~) (3.11) 

The last term in (3.11) can be controlled using (3.7) and Lemma 3.1, 

I UU@(f) -- U,@(f)l 
j k , , - L ( v k ) ]  

2 f dVj aj(v,) FI N f , ( v i )  [ I  f , (v , )[ fU(vk)  
k ~ l  i = 1  i = k + l  

~<j klGilh oo Ij f , ~ - f ,  ll0 <~ C exp(C II f II])/ln In N (3.12) 

Let us now evaluate the rest of the right-hand side in (3.11), for the 
moment only considering rational times t = ne for some n e N. Then 

#,( (~ ) - # o ( U 7 r  

tz--I  
N N = ~ #(._k)~Uj~--#(._k-~)~U(k+,)~(; 

k = 0  

fs - d  (u[N] + ' -  UE']) ~b (3.13) ds N = # ,  _ , (  UE,  ]fa)  - # , _  E,] ~ 

N by adding and subtracting in the sum the quantity #(, k-~),(U~b).  As we 
remarked after (3.5), U s Cb ~ F for any s ~< T, and so 

#, (~)  - #o(U,~O) 

= d~{#, ,(LV~'s~4)-#, E~_,(DU~s~4)} 

= d s # , _ + [ ( L - D )  UEN](~]+ as dz# ,_ : [L(DU(~]) ]  

:-- ~ + J2 (3.14) 

Here, by (2.31) 

and 

N U~,]~b(f) LU~](~( f )  = lira UEsl~b(fh)- 
h ~ O  h 

- [U[,?+~q~(f)-  U~s]~b(f)] 
g 

(3.15) 

(3.16) 
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Evidently (3.14) holds strictly, once it is proved that all terms make sense. 
This will be done next starting with ~ .  We have 

LU~]~(f)= 
i i = 1  

, = 1  k = l  
k4=i 

and analogously 

~, f Vj{Gj(Vj) '-1 J DU:~,]~)(f)= d [I fE~iq+~(vk) l-[ 
i = 1  k ~ l  k = i + l  

i = 1  k - -1  
k ~ i  

+ dVjaAv.) Z I1 N f E#v~) 
l = l  v = l  k = l  

N N ] 7  N x Q (fEsj)(v~) f[~+~(vk 
k = v + l  

J 
X [ ~  N N f Esj(Vk) ~f  [,](Vi) 

k = i + l  

(3.17) 

- } 

(3.18) 

Hence by (3.6) and (3.7) it follows that 

[(L-D)UE~]~] <~j [IG/[oo [[[(~-~)f~,]llo+cj(lnlnN) N II~fEs~llol (3.19) 

N N Since ~f[~? = Q (fE,~), again by (3.6), the second term in (3.19) tends 
to zero with e uniformly in f and [s]  ~< T. Taking into account Lemma 3.2 
and (3.19) and recalling that e = T/N, we thus have 

J]~O(T,N,J)[ffdsl.tt-s{llfU4exp(C I/fll2)} + 1] 

where O is a function such that 

(3.20) 

lim ~h(T,N,j)=O 
N ~ o o  

Since #,_ s belongs to d{l~(Z), the integral in (3.20) can be bounded by 
a constant uniformly in [0, T] by writing the exponential as its Taylor 
expansion. Then ~ converges to zero as N tends to infinity. 



358 Arkeryd e t  al.  

As for J2, it follows from (3.17), (3.18), and Lemma 3.2 that 

IL(DU~,] (~)(f)t <~ CJ 2 II ~jll ~ (in In N){exp(C1 II f II ~) ~p(N) II f II 4 + In In N} 

Since # t -  ~ e Jgl~(X) and [s]  + e - s ~ T/N, Y2 converges to zero as N tends 
to infinjty. The convergence of ~ and ~2 to zero when N tends to infinity 
together with (3.12) allows us to conclude that #, coincides with fl, for any 
rational time t = ne. By a density argument this result can be extended to 
any real time t e [0, T]. | 

Remark on the Asymptotic Behavior. Our solutions to the HBH are 
of the kind 

i = l  

fl, being defined in (2.23). Under the assumption of finite entropy H( f ) ,  it 
is known that any solution to the HBE converges weakly, as time goes to 
infinity, to a Maxwell distribution 

M(v; u, T) = (2~zT) -3/2 exp[ - (v - u)2/2T] 

where T and u, temperature and mean velocity, depend on f (the density 
is fixed by the normalization condition). 

Therefore, since fi, e J4'I~(Z), a positive measure #~ on ~ + x R 3 exists, 
such that 

J 

f #~(du, dr) l ]  M(u, T) limoo A,= 
i = 1  

Here the limit is to be interpreted in the weak sense. The measure ~oo can 
be determined from the initial measure/~, 

f #oo(dT, du) (p(u, T) : f tt(df) (p(u(f), T( f ) )  

(for more details, see ref. 4). 

4. PROOF OF THE AUXIL IARY L E M M A S  

Proof of Lemma 3. 1. Let 7, be the solution to the following Cauchy 
problem: 

d jT,(v) = QN(7,, 7t)( 13 ) 
ell  (4.1) 

fo(V) = f(v)  e J~ 
with QN defined in (3.2). 
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By ref. 8, we know that there is a unique solution to (4.1), which 
belongs to 5P~ for any t e [0, T]. Moreover, using (2.22), it follows that 

]l jT, - f tH o ~< C exp(C1 ]/f ][ 43)/ln In U (4.2) 

Here f t  is the solution to (2.9) with the same initial value f. Since 

I l f X - f ,  llo ~ < I l f U - f ,  llo + l lT , - f ,  llo (4.3) 

by (4.2) we are left with the analysis of IlfN--y,l]o . By (3.6) and (3.7) 

f2 i i f N _ f ,  llo ~< ds I N N JlQ (YEs? +~s,f~,]-JTs)l]o 

~<2c ln lnN ds {llf ,~-~xllo+ll  N N f s -fEx~llo} 

<~2clnlnNfodS i if  N_~sl lo+l lQ (fE fcq)l lo 

<<'2clnlnN{fo 'dsllfy-~'l'~ (4.4) 

since s -  [s]  < TIN. But (4.4) implies that 

C 
N ~<~ t<~T 

II f~  -)7,n o --~ In In N '  

thus completing the proof of the lemma. | 

Proof of Lomma 3.2. Let us start from 

~[s] 
Y f  r x] = ~ f  + 2 dr QU(f~], 2,f [•? ) 

~0  

(4.5) 
~ f  Eu~=~f + dr N N N N Q (fE~l+~+f~l,@fF~]) 

Here we have used that 
fEN] N N +~= (f~)[~1 

With 6 = 2 ' -  9 ,  it follows that 

afE N ] = a f + 2  dr N N N N N N N Q ( f ~ ] ,  ~SfE,]) + dr Q (f[~l+~ -- f E~ l ,~ f  E~l) 
~0  ~0  

(4.6) 
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To obtain an N-independent  bound for N , ][6fE~1LI 2 over [0, T], we need to 
pass to absolute values in (4.6), 

2 f [ s ]  1laf~,lllR <~ll6fll + 2  dr f dvsign6f~'~l(v) 
~0 

X (1 "4-lt)t 2) N N Q ( f ~ ,  5f~,~)(v) 

-~- ~ [s] [ N N N 
- f E z ? + e ,  2 dr I Q (f~,3 ~f~v~lll (4.7) 

~0 

Let us first consider the second term in the right-hand side of (4.7). We 
use the technique of ref. 17, and give the important steps for the sake of 
completeness. Splitting QN into its four terms, two each from the gain and 
the loss terms, and recalling that f N  is positive on [0, T], we have 

2 f dv (1 + I/)12) sign 3 f ~ ] Q N ( f ~ ] ,  6f~,~) 

<~2fdv (1 + [vj 2) QN(U~I, [Sf~3[)(v) 

+2cfdvdvl  ( 1 +  Iv[ 2) I v - v i i  ~cN(v, v~)f~l(V)[6f~](V~')] 

~< 0 + C [I f~v,? 113 116f ~] 112 (4.8) 

which by (2.22) implies 

"(4.8)" ~< C Ilfll 2 1157F~11[ 2 (4.9) 

Next an estimate of the first term in (4.7) gives 

[I 6f It 2 = II Q(f, f )  - QN(f, f)ll 2 

C fdvdv ldn( l+lv l2 )  lV_Vll2lf(v,)f(v,1)_f(v)f(Vx)l <'ln--Y nN 
C 

<~ln-l~nNf dv dv 1 [1 + Iv[ 2 + [v~[ 2] [v - vl]2f(v)f(v~) 

C 
~< ln--nln N 11fl]4 ]If 112 (4.10) 

Let us finally evaluate the last term in (4.7), 

I I3N(fN fN  N 
N N N N N N = s i l O  (O (ft~l,fE~l),O (f~*3,fEv~l))l/2 

<~ CZ IIfH= (ln In N)3/N (4.11) 
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Collecting the estimates (4.9)-(4.11), we get 

N 116/E,l[12~exp(C lrfll~) C Ilfll4/lnln N I 
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